Марсианская программа россии – —

российские планы освоения звездного пространства – Москва 24, 21.10.2016

Полгода назад в России утвердили Федеральную космическую программу до 2025 года. Планируются запуски аппаратов к Марсу и Луне. О первых результатах – читайте в материале m24.ru.

Марсианская программа

Проект «Экзомарс» зародился в 2005 году в недрах Европейского космического агентства (ЕКА). Роскосмос присоединился к миссии лишь в 2013 году. Россияне заменили в проекте ученых из NASA, которым урезали бюджет, в результате чего им пришлось сосредоточиться на собственных программах.

В этой миссии у отечественных специалистов с европейцами есть как общие задачи, так и частные. В 2003 году европейцы высадили на красную планету марсоход «Бигль-2», но аппарат не вышел на связь. Это попытка реабилитироваться. Советский Союз совершал мягкую посадку на Марс еще 45 лет назад. Последний раз Россия попыталась оказаться на Марсе в 1996 году. Но тогда межпланетная станция, переполненная научной аппаратурой, взорвалась спустя пять часов полета. «Экзомарс» – новый шанс возобновить марсианскую программу.

Миссия проходит в два этапа с запусками космических аппаратов в 2016 и 2020 годах. Первый этап – во многом подготовительный. Ученые вывели на орбиту спутник, а на поверхность планеты высадили демонстрационный модуль для отработки будущей посадки полноценного марсохода.

Марс – четвертая планета от Солнца и седьмая по размерам планета Солнечной системы. Масса планеты составляет 10,7 процента от массы Земли. Если вы весите 100 килограммов, то на Марсе вы бы весили 38 из-за малой гравитации. Марс называют «красной планетой» из-за оксида железа, который содержится в грунте. Климат на планете похож на земной, но холоднее и суше. Температура на планете колеблется от −153 градусов на полюсе зимой и до +30 градусов на экваторе в полдень. Средняя температура составляет −50 градусов.


Космический аппарат запустили 14 марта 2016 года с космодрома Байконур. Аппарат состоит из орбитального спутника Trace Gas Orbite (TGO) и автоматической марсианской станции «Скиапарелли».

За семь месяцев аппараты, сцепленные друг с другом, пролетели почти 500 миллионов километров. К радости ученых, TGO 19 октября успешно вышел на орбиту Марса и стал очередным искусственным спутником Красной планеты.
Судьба «Скиапарелли» менее успешна. Связь с аппаратом потеряли во время посадки. Над причинами ученым еще предстоит поломать голову. В 2020 году европейский ровер приземлится уже в составе российской посадочной платформы.


В качестве носителя выступила отечественная ракета «Протон». Примечательно, что и оборудование на спутнике – наполовину российское. Традиционно считалось, что Луна и Венера – советские вотчины, а Марс представляет интерес только для американцев, но успешный (по крайней мере, в плане вывода на орбиту спутника) запуск ракеты к соседу Земли свидетельствует о том, что эта классификация безнадежно устарела.

Прибор ФРЕНД поможет найти воду на Марсе. Детектор регистрирует потоки нейтронов от поверхности планеты. Они расскажут о содержании водорода а, следовательно, воды и водяного льда на глубине до одного метра. Карты распространенности водорода необходимы, чтобы точнее выбирать места посадки будущих марсианских миссий. На сегодня самым перспективным местом считается плато Оксия, уверен директор Института космических исследований (ИКИ) РАН Лев Зеленый. Для будущих марсонавтов эксперимент ФРЕНД также промониторит радиационную обстановку на орбите.


Прибор АЦС будет искать признаки жизни в атмосфере. Задача оптического спектрометра – изучить малые примеси газов в атмосфере, в особенности, метана. Этот газ свидетельствует о возможной биологической активности на планете.

На «Экзомарсе» Россия не остановится и собирается вернуться к исследованию Фобоса – спутника Марса. «Мы планируем вернуться на Фобос. Проект будет использовать заделы, которые уже есть у НПО им. С.А. Лавочкина. Сам Фобос представляет собой захваченный метеорит. Но на нем может быть много вещества и самого Марса», – рассказал журналистам Зеленый.

«Фобос-Грунт» – первая за 15 лет российская автоматическая межпланетная станция, предназначенная для доставки образцов грунта со спутника Марса, – была неудачно запущена в ноябре 2011 года. Двигательная установка станции не включилась и не смогла перевести аппарат на траекторию перелета к Марсу. В итоге «Фобос-Грунт» остался на околоземной орбите. Вскоре обломки зонда упали в Тихом океане. Аппарат нес 50 кг научной аппаратуры на борту.

Лунная программа

Фото: m24.ru/Александр Горностаев

Россия возобновила и лунную программу. Спустя 40 лет. В прошлом Советский Союз неоднократно высаживал на спутник Земли луноходы, брал пробы грунта и возвращал их домой. Последний луноход вернулся в августе 1976 года. В этом плане мы догоняем сами себя, хотя, конечно, на новом этапе развития техники.

Теоретически доказано, что на Луне на полюсах может быть вода в виде льда. А ее наличие позволит оборудовать автономные базы на спутнике Земли. Это прямая дорога к колонизации небесного тела, которое содержит полезные ископаемые. Кроме того, Луна может стать отличной подлетной базой к Марсу. Со спутника Земли лететь до Красной планеты банально меньше.

На первом этапе российской программы к Луне отправятся четыре космических корабля для изучения естественного спутника. Они должны определить площадку для будущей высадки человека. А для этого придется выяснить, где и сколько льда находится на Луне, освещенность спутника Солнцем и другие сведения.

Фото: m24.ru/Александр Авилов

Все аппараты произведут в научно-производственном объединении им. С.А. Лавочкина в подмосковных Химках. Более того, макет первого – Луна–25 «Глоб» – уже готов в натуральную величину. Луна «Глоб» стартует в 2019 году с космодрома Байконур. По баллистическим расчетам эксперты дают окно запуска в три месяца: ноябрь 2018 – январь 2019 года. Задача автоматической станции – отработать посадку на спутник.

Орбитальный зонд Луна–26 «Ресурс» должен стартовать вслед за Луной «Глоб» в 2020 году. Его задача – провести подробную съемку с полярной орбиты Луны, для того, чтобы определить район будущих посадок аппарата Луна–27 «Ресурс». Проект «Ресурс» уже глубоко проработан, и его не должны поджидать большие сюрпризы.

Экспедиция Луна-27 пройдет при участии Европейского космического агентства. Большое внимание будет уделено научным экспериментам. Чего только стоит разрабатываемая сейчас итальянцами буровая установка. C ее помощью космический аппарат словно в фильме «Армагеддон» проникнет вглубь Луны до двух метров.

Фото: m24.ru/Александр Авилов

Завершит первый этап лунной космической программы аппарат Луна-28 «Грунт». С его помощью в 2024 году предполагается возобновить экспедиции по доставке лунного грунта на Землю.

Лабораторные возможности на Земле несопоставимы с анализаторами, которые есть на луноходах. Поэтому из тех районов, где есть подтверждение о наличии воды, надо привезти образцы на Землю. Тогда это будет не качественный анализ, а количественный. Возможно, станет ясно, насколько велики запасы воды на Луне.

На этом первый этап лунной миссии заканчивается. Дальше начинается самое интересное. Пилотируемые полеты к естественному спутнику Земли, высадка космонавтов, обустройство первых лунных полигонов. Но вся эта фантастика выходит за горизонт планирования принятой Федеральной космической программы.

Частная космонавтика

Поразительно, но в России есть частная космонавтика. Я и сам немало удивился, когда об этом узнал. SpaceX как-то на слуху у всех, а вот российские предприятия – еще нет. Отечественные частные компании уже производят оборудование, которое работает на спутниках в космосе. Есть планы развивать космический туризм. Конечно, пока масштабы несопоставимы с Соединенными Штатами. Но ведь и частная собственность в России появилась по историческим меркам недавно. Так что своего Илона Маска надо еще подождать.

Мнение эксперта

Ракетную технику частным компаниям в России можно создавать. По сути для этого нужно пройти государственную сертификацию. Нужно соответствовать определенным требованиям. Государство должно быть уверено, что ты не создашь ракету, которую запустишь и угробишь людей. Что ты не передашь технологии другой стране. Приходится подписывать многочисленные документы о секретности, не передаче и нераспространении, о безопасности и так далее.

У частников на порядки меньше ресурсов чем у «Роскосмоса» и других крупных госкорпораций. В то же время их ресурсы являются обузой. Зачастую они простаивают незагруженными. При этом несут в себе не только коммерческую функцию, но и социальную. С частными компаниями проще, они гибко оптимизируются, плюс созданы под конкретный проект. У них полная загрузка. Однако лет через 20 лет успешная частная компания может превратиться в неповоротливого монстра, как американский Boeing и Airbus.

Павел Пушкин

Генеральный директор ООО «КосмоКурс»


Российская компания «КосмоКурс» в рамках фонда Сколково собирается отправлять туристов в космос. Для этого она создает космический комплекс, который будет состоять из многоразовой ракеты-носителя и такого же космического аппарата.

«Идея простая, – рассказал m24.ru генеральный директор компании Павел Пушкин. – Суборбитальный полет в космос на высоту 200 километров туда и обратно. Полет от старта до посадки длится 15 минут. При этом невесомость человек будет испытывать в течение пяти-шести минут. За такой полет люди готовы платить деньги. Стоить он будет 200-250 тысяч долларов».


Первый полет пройдет в 2021 году. Сейчас ракету только проектируют. Над амбициозной задачей трудится команда из 17 человек. В планах расширение до 50, но понятно что полсотни человек ракету не сделают, признается Павел.

«Мы занимаемся только проектированием и будем договариваться с заводами о производстве. В середине 2017 года определимся с конкретными предприятиями, а первые опытные изделия получим уже в 2018 году», – рассказал глава космотуристической компании. Проект работает за счет средств частных инвесторов. Государство помогает налоговыми льготами, учитывая, что компания вошла в состав «Сколково».

Космодром Байконур Фото: ТАСС/Олег Урусов

Интересно, что для стартов рассматривают не только космодромы, наподобие Байконура. Среди государственных площадок есть военный полигон Капустин Яр. Однако от него, скорее всего, откажутся из-за большой военной загрузки. Компания изучает нейтральные площадки в Астраханской и Волгоградской областях. «Для старта нам подойдет просто равнинная, пустынная местность с определенными параметрами. Необязательно это должен быть космодром. Мы можем создать площадку с нуля и продумываем такую возможность», – пояснил Пушкин.

Надеюсь, космические во всех смыслах цены станут доступнее уже на нашем веку. И каждый из нас c вами сможет в отпуск вместо европейского или курортного города слетать в космос. Пока с уверенностью можно сказать, что у человечества вернулся интерес к освоению дальних планет.

www.m24.ru

Россия отложила колонизацию Марса на два года

Российская космическая программа по освоению Марса претерпела изменения. Запуск экспедиции к Красной планете решили отложить на два года
Russian Look

Российская космическая программа по освоению Марса претерпела изменения. Запуск экспедиции к Красной планете решили отложить на два года. Если раньше российские чиновники, отвечающие за освоение космоса, говорили о

начале полета к Марсу в 2022 году, то теперь речь только о 2024 годе.

Проект освоения Марса под названием «М» состоит из двух этапов: сначала российские специалисты намерены получить образцы грунта со спутника Красной планеты — Фобоса — и только затем приступить к непосредственному изучению самого Марса. Первый этап запланирован на 2020 год, а второй — собственно марсианский — на 2024-й, рассказал гендиректор НПО имени Лавочкина Виктор Хартов 28 января, передает «Интерфакс».

Первая часть экспедиции «М» носит название «Бумеранг». Конечной целью первого проекта называется доставка грунта с Фобоса. Для этого российские специалисты придумали специальную схему. Изначально на спутник Красной планеты отправится аппарат для отбора грунта. Вместе с ним к Фобосу полетит заправленная ракета, которая доставит капсулу с отобранным грунтом на орбиту Марса. Там эту капсулу подхватит космический перевозчик и доставит ее на Землю. Другого способа вернуть грунт в российские лаборатории практически не существует, признал Хартов.

Российские исследователи, изменив сроки исполнения программы, не стали менять в ней поэтапный подход, несмотря на то, что ранняя попытка начать освоение Марса с Фобоса не увенчалась успехом. В ноябре 2011 года с «Байконура» к спутнику Марса запустили межпланетную станцию «Фобос-Грунт». Однако проект провалился еще на старте, когда при отделении от ракеты-носителя у аппарата отказали двигатели и он завис на околоземной орбите. В январе 2012 года

станция сгорела в плотных слоях атмосферы, а ее обломки упали в Тихий океан.

Теперь российские исследователи подходят к освоению Красной планеты более тщательно, поэтому перед тем, как отправиться на дальние расстояния, они планируют отрабатывать все технологии на Луне. По словам президента РКК «Энергия» Виталия Лопоты, Луну нужно использовать «как зону отработки необходимых технологий для освоения Марса», а затем опробованные аппараты отправлять на Марс, сообщает ИТАР-ТАСС.

Точку зрения руководителя госкомпании разделяет и Виктор Хартов. Сейчас его предприятие разрабатывает посадочные модули для полетов на Луну. Как пояснил Хартов, эти модули могут понадобиться для транспортировки в нужную точку Луны роботизированной техники и в целом использоваться для создания на спутнике Земли инфраструктуры. «С 2016 года начнется реализация лунной программы, которая должна завершиться возвратом лунного грунта с содержанием льда», — сказал Хартов.

У России всегда были амбициозные планы по освоению Луны. Руководитель одной из лабораторий института космических исследований РАН Игорь Митрофанов раньше говорил о планах по созданию на спутнике Земли полярных баз. В настоящее время по этому направлению российские исследователи сотрудничают с NASA. При этом отечественные ученые также работают с Европейским космическим агентством, развивая программу по добыче и доставке на Землю лунного грунта.

www.newsru.com

российские планы освоения звездного пространства – Москва 24, 21.10.2016

Полгода назад в России утвердили Федеральную космическую программу до 2025 года. Планируются запуски аппаратов к Марсу и Луне. О первых результатах – читайте в материале m24.ru.

Марсианская программа

Проект «Экзомарс» зародился в 2005 году в недрах Европейского космического агентства (ЕКА). Роскосмос присоединился к миссии лишь в 2013 году. Россияне заменили в проекте ученых из NASA, которым урезали бюджет, в результате чего им пришлось сосредоточиться на собственных программах.

В этой миссии у отечественных специалистов с европейцами есть как общие задачи, так и частные. В 2003 году европейцы высадили на красную планету марсоход «Бигль-2», но аппарат не вышел на связь. Это попытка реабилитироваться. Советский Союз совершал мягкую посадку на Марс еще 45 лет назад. Последний раз Россия попыталась оказаться на Марсе в 1996 году. Но тогда межпланетная станция, переполненная научной аппаратурой, взорвалась спустя пять часов полета. «Экзомарс» – новый шанс возобновить марсианскую программу.

Миссия проходит в два этапа с запусками космических аппаратов в 2016 и 2020 годах. Первый этап – во многом подготовительный. Ученые вывели на орбиту спутник, а на поверхность планеты высадили демонстрационный модуль для отработки будущей посадки полноценного марсохода.

Марс – четвертая планета от Солнца и седьмая по размерам планета Солнечной системы. Масса планеты составляет 10,7 процента от массы Земли. Если вы весите 100 килограммов, то на Марсе вы бы весили 38 из-за малой гравитации. Марс называют «красной планетой» из-за оксида железа, который содержится в грунте. Климат на планете похож на земной, но холоднее и суше. Температура на планете колеблется от −153 градусов на полюсе зимой и до +30 градусов на экваторе в полдень. Средняя температура составляет −50 градусов.


Космический аппарат запустили 14 марта 2016 года с космодрома Байконур. Аппарат состоит из орбитального спутника Trace Gas Orbite (TGO) и автоматической марсианской станции «Скиапарелли».

За семь месяцев аппараты, сцепленные друг с другом, пролетели почти 500 миллионов километров. К радости ученых, TGO 19 октября успешно вышел на орбиту Марса и стал очередным искусственным спутником Красной планеты.
Судьба «Скиапарелли» менее успешна. Связь с аппаратом потеряли во время посадки. Над причинами ученым еще предстоит поломать голову. В 2020 году европейский ровер приземлится уже в составе российской посадочной платформы.


В качестве носителя выступила отечественная ракета «Протон». Примечательно, что и оборудование на спутнике – наполовину российское. Традиционно считалось, что Луна и Венера – советские вотчины, а Марс представляет интерес только для американцев, но успешный (по крайней мере, в плане вывода на орбиту спутника) запуск ракеты к соседу Земли свидетельствует о том, что эта классификация безнадежно устарела.

Прибор ФРЕНД поможет найти воду на Марсе. Детектор регистрирует потоки нейтронов от поверхности планеты. Они расскажут о содержании водорода а, следовательно, воды и водяного льда на глубине до одного метра. Карты распространенности водорода необходимы, чтобы точнее выбирать места посадки будущих марсианских миссий. На сегодня самым перспективным местом считается плато Оксия, уверен директор Института космических исследований (ИКИ) РАН Лев Зеленый. Для будущих марсонавтов эксперимент ФРЕНД также промониторит радиационную обстановку на орбите.


Прибор АЦС будет искать признаки жизни в атмосфере. Задача оптического спектрометра – изучить малые примеси газов в атмосфере, в особенности, метана. Этот газ свидетельствует о возможной биологической активности на планете.

На «Экзомарсе» Россия не остановится и собирается вернуться к исследованию Фобоса – спутника Марса. «Мы планируем вернуться на Фобос. Проект будет использовать заделы, которые уже есть у НПО им. С.А. Лавочкина. Сам Фобос представляет собой захваченный метеорит. Но на нем может быть много вещества и самого Марса», – рассказал журналистам Зеленый.

«Фобос-Грунт» – первая за 15 лет российская автоматическая межпланетная станция, предназначенная для доставки образцов грунта со спутника Марса, – была неудачно запущена в ноябре 2011 года. Двигательная установка станции не включилась и не смогла перевести аппарат на траекторию перелета к Марсу. В итоге «Фобос-Грунт» остался на околоземной орбите. Вскоре обломки зонда упали в Тихом океане. Аппарат нес 50 кг научной аппаратуры на борту.

Лунная программа

Фото: m24.ru/Александр Горностаев

Россия возобновила и лунную программу. Спустя 40 лет. В прошлом Советский Союз неоднократно высаживал на спутник Земли луноходы, брал пробы грунта и возвращал их домой. Последний луноход вернулся в августе 1976 года. В этом плане мы догоняем сами себя, хотя, конечно, на новом этапе развития техники.

Теоретически доказано, что на Луне на полюсах может быть вода в виде льда. А ее наличие позволит оборудовать автономные базы на спутнике Земли. Это прямая дорога к колонизации небесного тела, которое содержит полезные ископаемые. Кроме того, Луна может стать отличной подлетной базой к Марсу. Со спутника Земли лететь до Красной планеты банально меньше.

На первом этапе российской программы к Луне отправятся четыре космических корабля для изучения естественного спутника. Они должны определить площадку для будущей высадки человека. А для этого придется выяснить, где и сколько льда находится на Луне, освещенность спутника Солнцем и другие сведения.

Фото: m24.ru/Александр Авилов

Все аппараты произведут в научно-производственном объединении им. С.А. Лавочкина в подмосковных Химках. Более того, макет первого – Луна–25 «Глоб» – уже готов в натуральную величину. Луна «Глоб» стартует в 2019 году с космодрома Байконур. По баллистическим расчетам эксперты дают окно запуска в три месяца: ноябрь 2018 – январь 2019 года. Задача автоматической станции – отработать посадку на спутник.

Орбитальный зонд Луна–26 «Ресурс» должен стартовать вслед за Луной «Глоб» в 2020 году. Его задача – провести подробную съемку с полярной орбиты Луны, для того, чтобы определить район будущих посадок аппарата Луна–27 «Ресурс». Проект «Ресурс» уже глубоко проработан, и его не должны поджидать большие сюрпризы.

Экспедиция Луна-27 пройдет при участии Европейского космического агентства. Большое внимание будет уделено научным экспериментам. Чего только стоит разрабатываемая сейчас итальянцами буровая установка. C ее помощью космический аппарат словно в фильме «Армагеддон» проникнет вглубь Луны до двух метров.

Фото: m24.ru/Александр Авилов

Завершит первый этап лунной космической программы аппарат Луна-28 «Грунт». С его помощью в 2024 году предполагается возобновить экспедиции по доставке лунного грунта на Землю.

Лабораторные возможности на Земле несопоставимы с анализаторами, которые есть на луноходах. Поэтому из тех районов, где есть подтверждение о наличии воды, надо привезти образцы на Землю. Тогда это будет не качественный анализ, а количественный. Возможно, станет ясно, насколько велики запасы воды на Луне.

На этом первый этап лунной миссии заканчивается. Дальше начинается самое интересное. Пилотируемые полеты к естественному спутнику Земли, высадка космонавтов, обустройство первых лунных полигонов. Но вся эта фантастика выходит за горизонт планирования принятой Федеральной космической программы.

Частная космонавтика

Поразительно, но в России есть частная космонавтика. Я и сам немало удивился, когда об этом узнал. SpaceX как-то на слуху у всех, а вот российские предприятия – еще нет. Отечественные частные компании уже производят оборудование, которое работает на спутниках в космосе. Есть планы развивать космический туризм. Конечно, пока масштабы несопоставимы с Соединенными Штатами. Но ведь и частная собственность в России появилась по историческим меркам недавно. Так что своего Илона Маска надо еще подождать.

Мнение эксперта

Ракетную технику частным компаниям в России можно создавать. По сути для этого нужно пройти государственную сертификацию. Нужно соответствовать определенным требованиям. Государство должно быть уверено, что ты не создашь ракету, которую запустишь и угробишь людей. Что ты не передашь технологии другой стране. Приходится подписывать многочисленные документы о секретности, не передаче и нераспространении, о безопасности и так далее.

У частников на порядки меньше ресурсов чем у «Роскосмоса» и других крупных госкорпораций. В то же время их ресурсы являются обузой. Зачастую они простаивают незагруженными. При этом несут в себе не только коммерческую функцию, но и социальную. С частными компаниями проще, они гибко оптимизируются, плюс созданы под конкретный проект. У них полная загрузка. Однако лет через 20 лет успешная частная компания может превратиться в неповоротливого монстра, как американский Boeing и Airbus.

Павел Пушкин

Генеральный директор ООО «КосмоКурс»


Российская компания «КосмоКурс» в рамках фонда Сколково собирается отправлять туристов в космос. Для этого она создает космический комплекс, который будет состоять из многоразовой ракеты-носителя и такого же космического аппарата.

«Идея простая, – рассказал m24.ru генеральный директор компании Павел Пушкин. – Суборбитальный полет в космос на высоту 200 километров туда и обратно. Полет от старта до посадки длится 15 минут. При этом невесомость человек будет испытывать в течение пяти-шести минут. За такой полет люди готовы платить деньги. Стоить он будет 200-250 тысяч долларов».


Первый полет пройдет в 2021 году. Сейчас ракету только проектируют. Над амбициозной задачей трудится команда из 17 человек. В планах расширение до 50, но понятно что полсотни человек ракету не сделают, признается Павел.

«Мы занимаемся только проектированием и будем договариваться с заводами о производстве. В середине 2017 года определимся с конкретными предприятиями, а первые опытные изделия получим уже в 2018 году», – рассказал глава космотуристической компании. Проект работает за счет средств частных инвесторов. Государство помогает налоговыми льготами, учитывая, что компания вошла в состав «Сколково».

Космодром Байконур Фото: ТАСС/Олег Урусов

Интересно, что для стартов рассматривают не только космодромы, наподобие Байконура. Среди государственных площадок есть военный полигон Капустин Яр. Однако от него, скорее всего, откажутся из-за большой военной загрузки. Компания изучает нейтральные площадки в Астраханской и Волгоградской областях. «Для старта нам подойдет просто равнинная, пустынная местность с определенными параметрами. Необязательно это должен быть космодром. Мы можем создать площадку с нуля и продумываем такую возможность», – пояснил Пушкин.

Надеюсь, космические во всех смыслах цены станут доступнее уже на нашем веку. И каждый из нас c вами сможет в отпуск вместо европейского или курортного города слетать в космос. Пока с уверенностью можно сказать, что у человечества вернулся интерес к освоению дальних планет.

www.m24.ru

Российский прибор и американская «Любознательность» | Космос | Общество

«Нам нужно научиться хотя бы железки отправлять»

В чем особенности текущей марсианской миссии NASA «МН» рассказал старший научный сотрудник Государственного астрономического института имени Штернберга Владимир Сурдин.

Три достижения Curiosity

— Во-первых, Mars Science Laboratory впервые испытал новую технику доставки марсохода. Ранее его спускали на парашюте. Теперь аппарат опускает реактивная платформа, мягко сажая на грунт и не поднимая пыли. Раньше взметаемая пыль мешала работать и даже выводила из строя какие-то приборы. Теперь платформа зависает в паре метров от поверхности и аккуратно спускает марсоход. Это важнейшее достижение, которое в дальнейшем будет использовано при изучении планет, где нет атмосферы. Готовятся полеты к спутникам Юпитера и Сатурна. Впервые на 100% успешная посадка, поздравляю NASA.

Во-вторых, на Curiosity установлены тонкие приборы для анализа химического состава остатков биосферы Марса. Они будут изучать не только когда-то существовавшие, но и сохранившиеся останки ДНК. Будет ли это работать, посмотрим.

В-третьих, это первый марсоход, работающий не от солнечных батарей, а от ядерного генератора, который не зависит от погоды. Он спокойно перенесет марсианскую зиму. Предыдущий марсоход «Феникс» замерз и не «проснулся». Curiosity может лет на 30 хватить, есть такая перспектива.

О российском спектрометре ДАН

— Лаборатория Игоря Митрофанова сделала отличный спектрометр. Других приборов мирового уровня у нас нет. Не создают. Больше некому. Видимо, только ИКИ пока держится. Американцы всегда используют самые лучшие приборы, но, правда, любят и сэкономить. Им не важна «национальность». В этом плане они не брезгливы. ДАН изучает легкие ядра водорода в слое грунта не менее одного метра. Прощупывает слой вечной мерзлоты. Уже понятно, что на Марсе есть не только лед, но и на глубине около 100 метров есть вода в жидком виде.

О марсианской программе России

— Последняя российская попытка просто облететь Марс закончилась провалом. А космические начальники сегодня говорят о пилотируемом изучении планеты. Это авантюра кому-то выгодна. Под нее запустили программу «Марс-500» в Институте медико-биологических проблем, где будущие космонавты в специальной камере сидели как бы на Марсе. Нужно научиться хотя бы железки отправлять, а потом возвращать на Землю. Людей туда пока отправлять нельзя, нет еще защиты от марсианского уровня радиации.

О «Любознательности»

— Очень странно у нас переводят название марсохода Curiosity. Почему «Любопытство»? Это бытовое понятие, как будто в замочную скважину подглядывают. «Любознательность» — более высокое понятие, соответствующее научной работе.

Примарсение

Весь процесс посадки проходил полностью в автоматическом режиме. За семь минут марсоход снизил скорость с 21 000 км/ч фактически до нуля. Все это время сотрудники NASA не имели возможности следить за аппаратом. Они уже назвали посадку «семью минутами ужаса». По заявлению NASA, Curiosity осуществил «самую сложную посадку в истории межпланетных миссий». В твиттере миссии Mars Science Laboratory появилось сообщение: «Я нахожусь на Марсе в безопасности! Кратер Гейла, я внутри тебя!» Весь мир обошли кадры бурной радости сотрудников NASA, когда у них на мониторах появились сообщения об успешной посадке, а Curiosity начал передавать изображения на Землю. В течение двух лет Curiosity будет изучать поверхность Марса.

«Задача — доказать обитаемость Марса»

О миссии спектрометра ДАН в интервью «МН» рассказал его создатель — заведующий лабораторией космической гамма-спектроскопии Института космических исследований РАН, доктор физико-математических наук Игорь Митрофанов

— ДАН — это же не первый прибор такого уровня, выпущенный вашей лабораторией?

— В космосе находится четыре прибора, созданных в нашей лаборатории. Это нейтронный спектрометр «Хенд» на космическом аппарате NASA «Марс Одиссей», который запустили в 2001 году. Он зарегистрировал мощное излучение нейтронов высоких энергий от этой планеты. На лунном разведывательном орбитере NASA 2009 года стоит наш прибор «Ленд», который используется для разведки залежей водяного льда в полярных районах Луны. На российском сегменте МКС работает «БТН-Нейтрон». Он изучает нейтронный фон на околоземной орбите. ДАН — это первый активный спектрометр. Для повышения точности он «облучает» Марс мощными импульсами нейтронов, которые вырабатывает ядерный генератор.

— В NASA уже празднуют, а вы уже отметили успех?

— Мы пока еще не включали его, только через пару дней. Он прилетел и не сломался в сложных условиях. Но по пути мы его проверяли, все в порядке. Как включим, убедимся на 100% в его работе, так и отметим по-настоящему.

— А сколько людей могут считать успех своим?

— Количество людей, создававших технологию, — сотни. Ведь разработки велись не менее 50 лет. Конкретный прибор, который сейчас находится на Curiosity, делали 60–70 человек. Мы не одни, конечно, делали ДАН. Импульсный нейтронный генератор, а он сейчас лучший в мире, произведен в НИИ автоматики им. Н.Л. Духова при «Росатоме». Блок детектирования создавали в нашем институте, калибровку делали в Объединенном ядерном институте в Дубне.

— Какова задача ДАН?

— Как у всей миссии — доказать обитаемость Марса в прошлом и настоящем. Я имею в виду примитивные формы жизни, конечно же. По мнению всех астробиологов, наличие жизни может быть связано с наличием воды. Curiosity приземлился на дно марсианского моря и исследует высохшие донные отложения. В минералах достаточное количество воды. Их и другие биофакторы интересно изучать. Задача нашего прибора — как раз разведка таких мест и находящихся там минералов для более подробного изучения потом.

— Кто-то еще в России делает космические приборы мирового уровня? Каков вклад нашей страны в подобные масштабные исследования космоса?

— Мой коллега Олег Кораблев создал несколько приборов, которые успешно работают на европейских кораблях «Марс-Экспресс» и «Венера-Экспресс». И это все, что создала страна за последние 15 лет для изучения дальнего космоса, то есть пространства за пределами околоземной орбиты.

— Почему у нас практически остановилось развитие космических программ?

— Сегодня все смотрели посадку Curiosity, последующую пресс-конференцию и ликование многих ученых. И стало ясно, что марсианская лаборатория — это национальная программа для США. На нее было затрачено 2,5 млрд долл. за семь лет. Все принципиальные решения принимались на высоком уровне — в правительстве и сенате. Я думаю, что у нас аналогичные успехи возникнут, когда освоение дальнего космоса станет стратегическим направлением развития государства, как в США. И нужно, чтобы важность этого поняли и наши налогоплательщики, как это произошло в Америке. Космос тянет за собой науку, и не только. Это поняли в Штатах, это поняли в Китае и Индии. Власти России далеки от этого понимания. Пока мы конкурируем в одном узком сегменте приборостроения.

www.mn.ru

Марсианская программа СССР — Старый Русский Топ

Мечты о межпланетном полете, овладевшие молодым Сергеем Королевым в начале 30-х годов, пробудили в нем завидную целеустремленность. На пути к цели он столкнулся с непониманием, завистью, отстранением от дела, необоснованным арестом в 1938 году, ссылкой на Колыму, работой в «шарашках» при НКВД. Но он не изменял своей цели, обращался к Сталину и после досрочного освобождения волей и настойчивостью определил свою судьбу. Руководство страны сумело разглядеть и оценить его особые качества. В 1946 году Королев назначен главным конструктором баллистических ракет дальнего действия основного средства доставки ядерного оружия до цели. Создавая ракетно-ядерный щит, он не забывал о межпланетном полете. Его ракета Р-7 оказалась способной не только нести ядерный заряд, но и разогнать корабль с человеком на борту до первой космической скорости и вывести его на орбиту вокруг Земли. Используя возможности Р-7, Королев осуществил целую серию триумфальных полетов пилотируемых кораблей и автоматических, в том числе межпланетных, аппаратов и станций. Но еще до начала пилотируемых полетов на околоземные орбиты Королев намечает фантастическую цель — разогнать корабль с человеком до второй космической скорости, вырваться за пределы земного тяготения и отправить его к ближайшей планете.

После предварительных проработок в ОКБ-1, 23 июня 1960 года вышло постановление правительства о создании ракетно-космической системы со стартовой массой 1000-2000 т, обеспечивающей выведение на орбиту вокруг Земли тяжелого межпланетного корабля массой 60-80 т. Именно межпланетного корабля, о котором 70 лет назад мечтали 27-летний Королев и 34-летний Тихонравов. Через 26 лет после описанной Тихонравовым встречи Королев стал главным конструктором межпланетного пилотируемого ракетно-космического комплекса для полета человека на Марс (Н1-ТМК), это самый яркий проект Королева, вершина его творчества.

В структуре Н1-ТМК две составные части: ракетный комплекс (РК) в составе трехступенчатой ракеты Н1, технического, стартового комплексов, других наземных сооружений, обеспечивающих подготовку, старт и выведение на ОИСЗ 75-тонных блоков, из которых собирается на орбите вторая составная часть Н1-ТМК — межпланетный космический комплекс (МКК).

Главным элементом ракетного комплекса была сверхтяжелая трехступенчатая ракета Н-1. Стартовый вес ракеты на начальном этапе составлял 2200 т, вес полезного груза, выводимого на ОИСЗ высотой 300 км, — 75 т. Именно для полета на Марс создавалась ракета Н1, а не для соревнований с американцами, кто раньше сядет на Луну, о котором без конца рассказывают нам пресса и телевидение. Стартовый вес межпланетного комплекса — 500-1000 т может быть сформирован на околоземной орбите только путем сборки, поэтому вес полезного груза 75 т выбран Королевым, исходя из возможностей создания ракеты в кратчайший срок. В дальнейшем под Лунную программу вес был увеличен до 2800 и 95 тонн. На базе Н1, используя ее верхние ступени, предполагалось создание унифицированного семейства ракет на экологически чистых компонентах: Н11 со стартовой массой 700 т и полезным грузом 20 т, использовавшей 2, 3 ступени Н1 и дополнительную 4 ступень; Н111 со стартовой массой 200 т и полезным грузом 5 т, использовавшей 3 ступень Н1 и дополнительную 4 ступень.

Конструктивно Н1 состояла из трех блоков — А, Б и В — с поперечным делением, представлявших собой силовые каркасные оболочки, воспринимавшие внешние нагрузки, внутри которых располагались сферические топливные баки, двигатели и другие системы. Блоки соединялись между собой переходными отсеками ферменного типа. На блоке А устанавливалось 24 двигателя, на блоке Б — 8, на блоке В — 4. За счет многодвигательной установки первой ступени обеспечивалось выведение полезного груза даже при отказе двух двигателей.

В качестве топлива для двигателей была выбрана нетоксичная, наиболее дешевая и освоенная в производстве пара — керосин и кислород с перспективой применения водорода. Разработка двигателей была поручена Н. Д. Кузнецову (ОКБ-276) в связи с тем, что В. П. Глушко, двигатели которого применялись на предыдущих ракетах, отказался разрабатывать двигатели для Н1 на принятых компонентах топлива. Это обстоятельство, переросшее в неразрешимый конфликт между Королевым и Глушко, отрицательно повлияло не только на результаты работ по ракете Н1 и Марсианскому проекту, но и на судьбу созданного Королевым огромного коллектива в ОКБ-1 и в смежных организациях и предопределило закат нашего лидерства в космонавтике.

При разработке Н1 необходимо было проявить новый подход при решении ряда научно-производственных проблем: по статической и динамической прочности, вопросам аэро- и газодинамики, созданию большого количества новых типов сложнейшей крупногабаритной арматуры, созданию базы для наземной экспериментальной отработки, уникальных сооружений на технической и стартовой позициях, в том числе филиала завода на космодроме для изготовления баков и сборки крупногабаритных отсеков. Работы по комплексу Н1 проводились под прямым руководством Королева, возглавлявшего совет главных конструкторов, и его первого заместителя Мишина.

Проектирование тяжелого межпланетного корабля (ТМК) для полета к Марсу Королев поручил Тихонравову — своему старому соратнику, с которым они мечтали о межпланетном полете. Оно проводилось в отделе N 9, в секторе Глеба Юрьевича Максимова под непосредственным руководством Тихонравова. Группа, занимавшаяся ТМК, в разные периоды насчитывала от 8 до 15 человек. Имея 6-летний опыт работы в ОКБ Лавочкина, я оказался основным исполнителем по этой теме: разрабатывал компоновку, состав, весовую сводку ТМК, комплексные вопросы по экспедиции в целом. Максимов был занят текущими работами по автоматам, и мне приходилось часто работать напрямую с Тихонравовым, а он регулярно встречался с Королевым и получал от него советы и рекомендации для разработки проекта.

Компоновка ТМК менялась по мере решения проблем длительного полета и уточнения требований к системам корабля. На первых этапах работы главной проблемой, определявшей компоновку, являлась невесомость. Бороться с ней пытались путем вращения корабля вокруг центра масс для создания искусственной тяжести. Жилые и чаще посещаемые отсеки размещались на максимальном расстоянии от центра вращения. Разумным представлялось расстояние 10-12 метров. Остальная масса компактно располагалась на противоположной стороне.

Следующая проблема — обеспечение продуктами питания, водой и воздухом. Запасы этих компонентов для экипажа из 3 человек на 2-3 года полета имели неприемлемые весовые характеристики, снизить их можно было за счет воспроизводства на борту. Эту задачу решал замкнутый биолого-технический комплекс (ЗБТК). В его составе проектировалась оранжерея площадью 60 кв. м, на которой размещались картофель, сахарная свекла, рис, бобовые, капуста, морковь, салат и другие огородные культуры. Растения выращивались на компактных стеллажах, на гидропонике, их корни располагались в специальных капсулах, к которым подводился питательный раствор. В состав ЗБТК также входили: хлорелльный реактор, ферма с животными — кроликами или курами и система утилизации отходов с запасами реактивов. По вопросам растениеводства регулярно проводились консультации с ведущими специалистами страны.

Солнечный поток для освещения растений сжимался цилиндрическими концентраторами, располагавшимися вдоль корпуса корабля, и вводился внутрь через щелевые иллюминаторы. Корабль для создания искусственной тяжести вращался. Концентраторы постоянно ориентировались на Солнце. Ось вращения корабля должна постоянно поворачиваться на Солнце. Для выполнения такого поворота вес топлива двигателей мог составлять 15 т, что требовало дополнительно несколько ракет Н1.

Для решения противоречия плоскость вращения корабля совместили с плоскостью траектории полета, что снизило вес, но породило новые проблемы. Появился узел вращения между концентраторами и корпусом корабля, Концентраторы стали двойной кривизны для сжатия солнечного потока в двух плоскостях, что усложнило их конструкцию. Иллюминатор диаметром до одного метра стал сферической формы из высокопрочного и жаропрочного стекла на основе ситалов.

Королев и Тихонравов уже в то время интуитивно понимали, что в длительных полетах можно будет обойтись без искусственной тяжести, что существенно могло упростить компоновку, но экспериментальных подтверждений этого в то время не было, и мы прорабатывали все варианты. Компоновки тех лет, сложные, неконструктивные, футуристические, сегодня вызывают улыбку, но такова была история, так рождался Марсианский проект.

В начале весны 1962 г. компоновка ТМК упростилась. Она представляла собой пятиэтажный цилиндр переменного диаметра, каждый этаж которого как отдельный модуль имел определенное функциональное назначение, что должно было позволить большую гибкость при заказе смежным организациям, сохранении ответственности за надежность на всех этапах создания и эксплуатации и параллельную отработку.

Первый этаж — жилой, с расположенными в нем тремя индивидуальными каютами для экипажа, туалетами, пленочными душевыми, комнатой отдыха с библиотекой микрофильмов, кухней и столовой. Второй — рабочий, с рубкой для ежедневного контроля и управления всеми системами ТМК, мастерской, медицинским кабинетом с нагрузочными тренажерами, лабораторией для проведения научно-исследовательских работ, надувным внешним шлюзом. Третий — биологический отсек, с расположенными в нем стеллажами с высшими растениями, светораспределительными устройствами, арматурой для подачи питательных растворов, клетками с животными, хлорельным реактором, емкостями для хранения урожая и химикатов, частью арматуры и оборудования ЗБТК. Четвертый — приборно-агрегатный отсек, в котором была сосредоточена основная масса приборов, аппаратуры и арматуры всех систем ТМК, он же решал задачу радиационного убежища.

Пятый этаж располагался снаружи, это была корректирующая двигательная установка с запасом топлива и спускаемый аппарат (СА), который стыковался своим верхним люком к люку в корпусе ТМК, расположенному в специальной сферической нише. На днище СА, закрывая нишу, размещалась КДУ с запасами топлива и частью аппаратуры, увеличивая радиационную защиту экипажа в полете и обеспечивая автономное маневрирование СА при возвращении на Землю и при нештатных ситуациях во время старта к Марсу. Экипаж управлял кораблем из СА при выполнении всех динамических операций. Снаружи на корпусе ТМК размещались концентраторы, солнечные батареи, радиаторы и жалюзи системы терморегулирования, антенны дальней радиосвязи, люк с надувным шлюзом для выхода из ТМК, элементы для передвижения по наружной поверхности.

В июле 1962 года по поручению Королева был подготовлен проспект плана освоения Марса. План предусматривал четыре этапа. Первая экспедиция на Марс планировалась в начале 1974 года. Тихонравов, вернувшись от Королева после его ознакомления с материалами проспекта, принес написанную им записку и попросил меня переписать ее в мою секретную рабочую тетрадь (записка была написана на обороте секретного черновика, который мог быть уничтожен), вот выдержки из ее текста:

… 4. Задачи освоения Луны и Марса различны. 5. Первая задача — проектирование корабля для большой экспедиции с возвращением. 6. Это возможно: а) на базе сборки, б) с ЭРДУ, в) с ЗБТК…

9. Нужно дублировать следующие трудности: а) нет ЭРДУ — вариант с жидкостными двигателями. б) нет ЗБТК — вариант с запасами. в) сборка … По пункту в: 1) возможно, потребуется облет не по соображениям науки и техники. 2) идти на риск посадки на Марс без возвращения на том же корабле. (Экспедиция из минимального числа людей ждет следующий корабль. ) Таким образом, можно делать облетный, но он должен быть элементом сборного!!! Нужно проектировать элементы.

Эти очень важные конкретные указания были для меня планом дальнейших действий.

На первых порах при разработке проекта полета на Марс в ОКБ-1 рассматривался вариант с использованием электрореактивной двигательной установки (ЭРДУ) для разгона с ОИСЗ к Марсу и других маневров. Он обладал высокими энергетическими характеристиками, допускавшими вольное обращение с массой полезного груза. Королев и Тихонравов слабо верили в возможность применения ЭРДУ в обозримом будущем. Королев в своей записке дал прямое указание ориентироваться на ЖРД для разгона к Марсу. Именно этим его проект принципиально отличается от остальных.

Во исполнение указания Королева мной был проведен сравнительный анализ возможности полета на Марс с применением ЖРД. По формуле Циолковского на логарифмической линейке было просчитано 24 варианта полета на Марс с вариациями по удельной тяге, воспроизводству продуктов в ЗБТК и по высотам орбиты у Марса, определены веса по всем этапам полета и исходные веса перед стартом с ОИСЗ.

План освоения Марса показывает, что кажущееся многообразие творчества Королева на самом деле строго подчинено одной конечной цели — полету на Марс — и отвечает главному принципу системного подхода: цели составных частей системы совпадают с целями системы.

Дополнительно по поручению Королева были подготовлены плакаты, иллюстрирующие схемы осуществления экспедиции, компоновку ТМК, общий вид марсианского экспедиционного комплекса перед стартом с ОИСЗ, для разных схем, компоновочную схему межпланетного комплекса в варианте с аэродинамическим торможением, и пояснительная записка. Материалы были доложены им на большом совещании с участием М. В. Келдыша, Н. И. Крылова, С. А.Афанасьева, Д. Ф. Устинова и были одобрены.

С начала 1963 года в соответствии со сделанными выводами начались проработки варианта с аэродинамическим торможением.

Экспедиционный комплекс при погружении в марсианскую атмосферу будет испытывать перегрузки и нагрев, допустимые пределы которых весьма ограниченны из-за большого количества внешних элементов, размеры, форма и прочность которых не рассчитаны на полет в атмосфере. Эта особенность с учетом требований по обеспечению искусственной тяжести, сборки комплекса на ОИСЗ и ряда других влечет за собой новый подход к компоновочной схеме ТМК, экспедиционного комплекса и всех его промежуточных конфигураций.

При наличии в составе МКК тормозного блока количество ракет Н1, необходимых для его сборки, составит 14-15, а время сборки на орбите 3-4 года, что не может рассматриваться всерьез. Отказ от тормозного блока позволит сократить количество потребных носителей до 5, а время сборки — до 1 года. Реализация этих мероприятий могла бы сократить стартовый вес до 350-300 тонн, а количество ракет — до четырех, что, с учетом перспективных возможностей Н1 выводить на орбиту до 240 тонн делала вариант полета на Марс на ЖРД вполне реальным в обозримые сроки.

На четвертый год проектирования облик межпланетного космического комплекса (МКК) был сформирован. Для сборки на орбите в его состав был введен монтажный отсек сферической формы с 6 стыковочными узлами. К двум противоположным узлам стыковались центральный модуль разгонного (с ОИСЗ) ракетно-космического комплекса, с одной стороны, с другой — ТМК с разгонным (с ОИСМ) блоком и посадочный комплекс. Перпендикулярно к ним стыковались 4 боковых модуля разгонного комплекса и укладывались вдоль центрального, образуя единую двигательную установку. После старта к Марсу МКК на этапах осуществления экспедиции меняет свой состав, вес и форму. По расчетам конца 1963 года вес комплекса на ОИСЗ составлял 360 тонн. Из них 103 тонны разгонялись к Марсу ракетно-космическим комплексом весом 257 тонн. Выход МКК на орбиту спутника Марса в проекте Королева выполнялся за счет аэродинамического торможения в его атмосфере. На устройства для торможения отводилось 20 тонн. На орбите спутника Марса МКК имел массу 83 тонны и состоял из следующих частей. Посадочный комплекс (ПК) — 30 тонн. В его составе тормозные и посадочные устройства, взлетная ракета (16, 5 т), капсула возвращения (3, 5 т). Орбитальный межпланетный комплекс (ОМК) — 53, 1 тонны. В его составе — ракетный блок для разгона ТМК с ОСМ к Земле и тяжелый межпланетный корабль. Элемент, в котором размещался экипаж при полете к Марсу и обратно, образующий единую конструкцию, понимался как собственно ТМК (он же в шутку — Тихонравов Михаил Клавдиевич). В его составе орбитальный модуль (12, 9 т), корректирующая двигательная установка (1, 8 т) и возвращаемый на Землю аппарат весом 2, 1 тонны, что составляет около 0, 5 % от начального веса комплекса на ОИСЗ.

Описанный облик межпланетного комплекса сформировался у нас лишь к 1964 году.

С января 1964 года в соответствии с выводами были развернуты работы по проектированию тяжелой орбитальной станции (ТОС) для отработки ТМК на орбите. Были проведены работы по выбору оптимальных высот орбиты станции с учетом ее торможения в атмосфере, необходимости одновременной доставки на нее экипажей и грузов, наличия вокруг Земли радиационных поясов. При разработке ТОС особое внимание уделялось модульности. Модули ТМК и ТОС должны были создаваться независимо друг от друга, иметь возможность автономного изготовления, отработки, модернизации, замены и исключить срыв подготовки комплекса из-за неготовности одного из элементов. Принципы, положенные в основу проектирования ТОС в 1964 году Королевым как первым главным конструктором тяжелых орбитальных станций, к сожалению, начали реализовываться только через 25 лет в 1986-1987 годах.

К лету 1964 года наш отдел располагал всеми необходимыми исходными проектными материалами и был готов расширить фронт работ в отделах ОКБ-1 и смежных организациях. Было подготовлено все для выпуска постановления правительства о привлечении к работам по экспедиции на Марс смежных организаций. Однако этого не произошло. Королева заставили разрабатывать программу высадки на Луну и марсианский проект стал заложником лунного.

До настоящего времени в работах тех лет отмечаются триумфальные полеты наших космонавтов, запуски автоматических аппаратов и станций без объяснения истинного смысла этих обширных исследований. Достоверных сведений о работах по марсианскому проекту Н1-ТМК нет. Все материалы в 1974 году уничтожены. А был ли марсианский проект Королева? В сегодняшних публичных представлениях истории развития проекта полета на Марс в Королевском ОКБ-1 — РКК «Энергия» упомянуты проекты 1960, 1969, 1988-2001, 2002-2003 годов, ориентированные на ЭРДУ, которой нет и поныне. А вот Королевский проект 1960-1964 гг. — величайший проект ХХ века — не упомянут вовсе. Хотя реальность его осуществления в то время была гораздо выше, чем сегодняшних планов.

Основа марсианского проекта Королева — ракета Н1 — вышла на летные испытания, но ей не дали успешно слетать. Представляя Н1 лишь виновницей проигрыша Лунной гонки, авторы не задают простой вопрос: если Королев с 1959 года делал лунную ракету, то почему через пять лет ему пришлось ее кардинально переделывать? Он, что, не умел пользоваться формулой Циолковского? Определить стартовый вес лунного комплекса — задача для студентов. Дело не в этом. Сегодня, когда идут разговоры о полете на Марс и на бумаге пишутся планы, вопрос о том, был ли Королевский проект экспедиции на Марс или не был — принципиальный. Если был, то следующий вопрос: кто и почему его похоронил 40 лет назад? В «похоронной» команде могут оказаться очень уважаемые люди. Сегодня космонавты, и не только наши, летают на ракете и корабле, созданными Королевым почти полвека назад. Летают на чужую станцию. Если Королев ошибся в выборе цели — межпланетном полете, то к какой цели мы двигались 40 лет после него? Чтобы сегодня ставить новые большие задачи, нужно внимательно проанализировать историю нашей космонавтики и сделанные нами ошибки, чтобы не повторить их снова.

P. S. В первой статье для «Тверской Жизни» я сообщал, что, несмотря на утрату архивных материалов, достоверные сведения о проекте сохранились. В 1994 году, узнав об уничтожении архивных материалов по ТМК, я рассекретил и забрал в личное пользование свои рабочие тетради. Они весьма подробны и дают полное представление о тех идеях и решениях, которые закладывались Королевым и Тихонравовым в проект полета на Марс более сорока лет назад.

topru.org

Россия вернется на Луну и Марс

Директор Института космических исследований РАН Лев Зеленый рассказал о лунной и марсианской программах России и сообщил, что в 2022 году планируется полет к спутнику Марса Фобосу.

В октябре 2013 года в Институте космических исследований РАН прошел Четвертый Международный московский симпозиум по исследованиям Солнечной системы, на котором обсуждались научные космические программы России, Европы и США.

Космический аппарат проекта «ЭкзоМарс».

Технологический образец российского лунного посадочного зонда «Луна-25» («Луна-Глоб»).

Центром экспозиции НПО им. С.А. Лавочкина на Аэрокосмическом салоне МАКС-2013 стал лунный комплекс с имитацией поверхности Луны на фоне лунного пейзажа: макет посадочного аппарата «Луна-Ресурс» (масштаб 1:5) и орбитального аппарата «Луна-Ресурс» (масштаб

 В первую очередь речь шла об изучении Луны и Марса — главных объектов научных программ мировых космических агентств. Обзор планируемых космических проектов России сделал директор Института космических исследований РАН Лев Зелёный. Лунная и марсианская программы России состоят из нескольких проектов, включающих важный общий элемент — автоматическую доставку грунта.

Лунная программа России в ближайшее время предусматривает запуск пяти космических аппаратов, названия которых продолжают традицию советских «Лун»: от «Луны-25» до «Луны-29». В 2016 году будет запущена «Луна-25» («Луна-Глоб»),  которую планируется посадить в южной полярной области Луны. Программа нацелена в первую очередь на изучение именно полярных регионов, где в грунте могут скрываться достаточно большие запасы летучих веществ, в том числе водяного льда, который в 2009 году открыл российский нейтронный телескоп ЛЕНД на борту аппарата Lunar Recoinnassance Orbiter (НАСА).

 Затем в 2018 году к спутнику Земли отправится орбитальная станция «Луна-26» («Луна-Орбитер»), а ещё через год на полюс Луны будет отправлен второй посадочный аппарат «Луна-27» («Луна-Ресурс») с бурильной установкой. Планируется, что срок жизни аппаратов составит около года. Основная работа орбитального аппарата по изучению спутника и окололунного пространства пройдёт на низкой околокруговой орбите высотой порядка 200 км, после чего он будет уведен на более высокую орбиту (500–700 км), где начнётся эксперимент ЛОРД по изучению космических лучей. Возврат добытого грунта из полярной области станет задачей космического аппарата «Луна-28» в 2021 году. И, наконец,  на 2023 год планируется запуск лунохода «Луна-29».

В настоящее время активно обсуждается возможное участие Европейского космического агентства в российской лунной программе. На конференции выступил директор научных программ ЕКА Альваро Хименес, подчеркнувший, что ЕКА заинтересовано в сотрудничестве с Россией в рамках лунной программы. В частности, европейцы предлагают поставить оборудование для «Луны-25», которое  значительно улучшит точность посадки, и бурильную установку для станции «Луна-27». Кроме того, ЕКА предлагает также участие в предварительной характеристике места посадки, в анализе образцов и обеспечении связи с аппаратом. Проект полностью европейского лунного посадочного аппарата в 2012 году не получил финансирования, и ЕКА пришлось присоединяться к программам других агентств.

Лев Зелёный так сформулировал стратегические цели изучения и освоения Луны: «От Международной космической станции — к Международной лунной станции». Перспективы исследования Луны разнообразны: от лунной астрофизической обсерватории, которой не будет мешать атмосфера и которой не нужно топливо, чтобы поддерживать орбиту, до возможной добычи минералов, запасы которых на Земле ограничены..

Марсианская программа России включает, в первую очередь, полномасштабное участие в европейском проекте «ЭкзоМарс» («ExoMars»), который включает не только совместное проведение научных экспериментов, но и создание инфраструктуры, в частности, создание объединенного наземного комплекса приема данных и управления межпланетными миссиями.  Проект предполагает запуск с помощью российских носителей «Протон»  двух космических аппаратов в 2016 и 2018 годах. На последнем с помощью разрабатываемого в России десантного модуля будет доставлен марсоход ЕКА массой около 300 кг. Задачи марсохода — геологические исследования и поиск следов жизни в подповерхностном слое Марса около места посадки.  Альваро Хименес отметил, что ЕКА нацелено на задачу возврата образца грунта с Марса.

Затем в 2022 году Россия  планирует вернуться к задаче исследования спутника Марса Фобоса, которая стояла перед проектом «Фобос-Грунт», закончившемся неудачей в 2012 году. Этот возврат символизирует и название нового проекта «Бумеранг». По словам Льва Зелёного, возврат грунта с Фобоса по-прежнему остаётся интересной научной задачей, которую пока не предполагается решить в программах других стран. «Мы планируем вновь вернуться к Фобосу в 2022 году. Эта миссия станет своеобразным трамплином перед реализацией других международных программ», – подчеркнул Зеленый. Ориентировочно на 2024 год запланирована миссия по возврату грунта с Марса.

На доставку грунта с Марса нацелена и марсианская программа США, которая в настоящее время  включает запуск в ноябре 2013 года зонда MAVEN, предназначенного для изучения атмосферы Марса, в 2016 году посадочного аппарата InSight для исследования ядра планеты и  в 2020 году нового марсохода. В НАСА уже объявлен сбор заявок на эксперименты для будущего марсохода  Дальнейшие миссии  пока находятся в состоянии планирования.

Фото НПО. Им. С.А.Лавочкина
По материалам Пресс-центра ИКИ РАН

www.nkj.ru

ПОЛЕТ ЧЕЛОВЕКА НА МАРС | Наука и жизнь

Мечта о полете человека на планету Марс имеет давнюю историю, но только сегодня мы подошли к возможности ее исполнения очень близко. Во многом интерес к Марсу был связан с ожиданием встречи братьев по разуму. И хотя рассчитывать на обнаружение на Марсе разумных существ не приходится, какие-то формы жизни там, вероятно, можно отыскать. Но значение полета человека на Марс выходит далеко за пределы поиска жизни вне Земли. Важно, что Марс — единственная планета, перспективная с точки зрения ее колонизации. Существует мнение, что на Марс следует отправлять не экипаж, а автоматические станции, которые способны заменить человека-исследователя (см. «Наука и жизнь» № 4, 2006 г.; № 1, 2007 г.). Несмотря на это, работы по осуществлению полета ведутся, а в Институте медико-биологических проблем начинается эксперимент по моделированию полета. О проекте готовящейся марсианской экспедиции рассказывает Леонид Алексеевич Горшков, главный научный сотрудник РКК «Энергия», доктор технических наук, профессор, лауреат Государствен ной премии, действительный член Академии космонавтики. Один из руководителей работ по марсианской программе в РКК «Энергия». Принимал непосредственное участие в проектировании и разработке кораблей «Союз», станций «Салют», «Мир» и российского сегмента Международной космической станции (МКС). В 1994-1998 годах Л. А. Горшков был заместителем директора программы Международной космической станции с российской стороны.

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Схема марсианской экспедиции.

Так устроен электроракетный двигатель.

Конструкция первого служебного модуля Международной космический станции «Звезда» послужила основой для межпланетного экспедиционного комплекса.

Внутреннее устройство жилого модуля межпланетного орбитального корабля.

Взаимодействие элементов модуля солнечного буксира.

Ферменные конструкции составляют основу двигательной установки межпланетного экспедиционного комплекса.

Общий вид межпланетного экспедиционного комплекса. На ажурных фермах установлены панели солнечных фотопреобразователей и два пакета электрореактивных двигателей.

Схема работы взлетно-посадочного комплекса, обеспечивающего доставку космонавтов-исследователей на поверхность Марса и возвращение их на орбитальный корабль.

Как выглядит полет человека на Марс

Перелет с орбиты Земли на орбиту Марса займет 2-2,5 года. Корабль, в котором все это время должен жить и работать экипаж, имеет массу 500 тонн, и топлива ему требуется сотни тонн. Именно масштабность задачи отличает полет человека на Марс от полетов сравнительно небольших автоматических аппаратов. Общая масса всего пилотируемого комплекса становится значительно больше, чем могут вывести на орбиту даже самые мощные ракеты-носители. Поэтому создавать гигантскую ракету для выведения с Земли всего межпланетного комплекса не имеет смысла. Проще отправлять его на околоземную орбиту по частям, из этих частей и собирать там комплекс, используя уже отработанные технологии сборки на орбите.

Полет произойдет следующим образом. За несколько месяцев комплекс соберут, и межпланетная экспедиция по гелиоцентрической орбите перелетит в окрестности Марса. Так как опускать весь межпланетный корабль на поверхность Марса нецелесообразно, в составе комплекса будет взлетно-посадочный модуль. После выхода межпланетного экспедиционного комплекса на круговую орбиту вокруг Марса в нем экипаж или его часть совершит посадку на поверхность планеты. После окончания работы на поверхности космонавты вернутся на корабль. Межпланетный экспедиционный комплекс стартует с околомарсианской орбиты к Земле и выйдет на орбиту, с которой стартовал к Марсу. На корабле возвращения экипаж спустится на Землю.

Таким образом, межпланетный экспедиционный комплекс состоит из четырех основных функциональных частей: корабля, в котором работает экипаж и размещается все основное оборудование; межпланетного буксира, обеспечивающего перелет по межпланетной траектории; взлетно-посадочного комплекса и корабля возвращения на Землю.

Основная проблема организации полета человека на Марс — обеспечить высокую вероятность благополучного возвращения экипажа. Уровень безопасности экипажа должен соответствовать российским стандартам, то есть марсианская экспедиция должна быть не опаснее, чем, например, полет на орбитальную станцию. Выполнить это требование чрезвычайно сложно.

Одним из принципиальных технических решений по межпланетному комплексу стал выбор буксира, по существу — большой ракеты с многократным включением двигателей.

Сегодня самой надежной ракетой, выводящей человека в космос, остается ракета-носитель «Союз», прекрасно работавшая всю многолетнюю историю пилотируемых полетов. Но даже и она, хоть и редко, отказывает. На этот случай предусмотрена система аварийного спасения, когда при выходе из строя ракеты-носителя пороховые двигатели уводят спускаемый аппарат с экипажем от ракеты и космонавты приземляются на поверхность Земли. Эту систему спасения уже приходилось применять при эксплуатации орбитальных станций.

Ракету «Союз» соберут на Земле и испытают с участием множества специалистов, включая группы контроля качества работ, а межпланетную ракету соберут и испытают на орбите. И она должна иметь значительно более высокую надежность, чем «Союз», так как невозможно создать систему аварийного спасения экипажа в случае отказа в процессе ее выхода на гелиоцентрическую орбиту. Поэтому для обеспечения необходимой безопасности экипажа нужны принципиально новые технические решения при выборе межпланетного буксира.

Работы над концепцией полета человека на Марс ведутся с 1960 года (см. «Наука и жизнь» № 6, 1994 г.). Первый отечественный проект корабля для посадки человека на поверхность Марса был выполнен в ОКБ-1, возглавляемом Сергеем Павловичем Королевым. Ныне это Ракетно-космическая корпорация «Энергия» им С. П. Королева. В проекте 1960 года было принято принципиально новое техническое решение: использовать для межпланетной экспедиции электроракетные двигатели (см. «Наука и жизнь» № 9, 1999 г.). Это решение РКК «Энергии» осталось неизменным для всех последующих модификаций проекта полета человека на Марс, и именно оно позволило во многом решить проблему безопасности.

Принцип работы электроракетных двигателей заключается в том, что реактивная струя, обеспечивающая тягу, создается не вследствие теплового расширения газа, как в жидкостных ракетных двигателях (ЖРД), а с помощью разгона ионизированного газа в электромагнитном поле, создаваемом бортовой электростанцией. Топливом, а точнее, «рабочим телом» станет газ ксенон.

В качестве электростанции, питающей электроракетные двигатели, в 1960 году собирались использовать ядерный реактор мощностью 7 МВт. Отдельные части корабля предполагали доставлять на орбиту тяжелой ракетой-носителем (в это время еще только начинались работы по ракете Н-1). Экипаж планировался из шести человек. После посадки на поверхность Марса оборудование собрали бы в виде «поезда», который должен был пересечь планету от одного ее полюса до другого.

В 1969 году этот проект был переработан. Мощность реактора увеличена до 15 МВт. Для повышения надежности двигательной установки вместо одного реактора запланировали три. В ходе переработки проекта пришлось умерить «аппетиты»: число посадочных аппаратов с пяти сократили до одного, членов экипажа стало четверо. В качестве ракеты-носителя решили использовать модификацию новой тяжелой ракеты Н-1 (см. «Наука и жизнь» №№ 4, 5, 1994 г.).

В 1988 году вследствие большого прогресса в создании пленочных фотопреобразователей и успехов в разработке трансформируемых ферменных конструкций ядерный реактор заменили на солнечные батареи. Одним из мотивов этого решения стало стремление сделать межпланетный экспедиционный комплекс экологически чистым. Основным достоинством такого решения была возможность многократного дублирования двигательной установки. Для доставки деталей корабля на орбиту Земли предполагалось использовать новую ракету-носитель «Энергия».

Элементы экспедиционного комплекса и состояние их разработки

Первый элемент международного комплекса — корабль, в котором работает экипаж. Он называется межпланетным орбитальным кораблем. Орбитальным — потому, что его главная функция связана с работой на орбитах межпланетного перелета. Создание этого корабля в сравнительно короткие сроки вполне реально. По своим задачам он, по существу, — аналог российского модуля «Звезда» Международной космической станции, только несколько больший по размерам. Дело в том, что на космическую станцию требуемое оборудование можно доставить на корабле «Прогресс» через два-три месяца, а у марсианской экспедиции такой возможности не будет два-два с половиной года. Поэтому все, что может понадобиться в течение всего полета, в том числе при возникновении нештатных ситуаций, нужно взять с собой и разместить на корабле.

Основные системы межпланетного корабля уже отработаны на орбитальных станциях «Салют» и «Мир». Поэтому для его постройки планируется использовать готовую документацию на многие конструктивные элементы, а главное — заводскую оснастку и технологии, имеющиеся на заводе — изготовителе корпуса модуля «Звезда» (завод Центра им. Хруничева).

Второй элемент межпланетного экспедиционного комплекса — солнечный буксир, обеспечивающий перелет по межпланетной траектории. Он состоит из двух пакетов электроракетных двигателей с системами управления, баков с рабочим телом и больших панелей с пленочными солнечными фотопреобразователями, снабжающими энергией двигатели.

Солнечный буксир также включает много уже разработанных агрегатов, конструкций и систем. Электроракетные двигатели широко используют в космической технике, и для полета на Марс требуется только несколько усовершенствовать их характеристики. Пленочные солнечные фотопреобразователи изготавливают в России для наземных нужд. А для проверки стойкости в условиях космического пространства их образцы размещали на внешней поверхности станции «Мир». Трансформируемые конструкции, на которых должны размещаться фотопреобразователи, также отрабатывали при полетах орбитальных станций. В солнечном буксире предполагается взять за основу конструкцию фермы «Софора», установленной на станции «Мир». Чтобы соединения не имели люфтов, использовали так называемый «эффект памяти формы», то есть способность некоторых материалов после нагревания принимать форму и размеры, какие были у соответствующих деталей до специально проведенной деформации.

Третий элемент межпланетного комплекса — взлетно-посадочный комплекс, в котором часть экипажа совершает посадку на поверхность Марса и возвращается обратно в корабль. Взлетно-посадочный комплекс в отличие от предыдущих элементов — совершенно новая разработка. Его аналогов в российских программах еще не было. Однако подобные задачи в российской космонавтике решались, и каких-то серьезных проблем по его созданию не видно.

И, наконец, четвертый элемент комплекса — корабль возвращения к Земле. Он имеет реальный прототип — корабль «Зонд», который разрабатывали в СССР для облета человеком Луны с входом в плотные слои атмосферы со второй космической скоростью. «Зонд-4»-«Зонд-7» совершили полеты в 1968-1969 годах с животными в кабине экипажа. Правда, от полетов человека в этих кораблях впоследствии отказались.

В чем же особенность проекта РКК «Энергия»? Почему он представляется вполне реальным? Прежде всего, из-за выбора двигательной установки межпланетного перелета. Электроракетные двигатели имеют сравнительно малую тягу, но высокую скорость истечения струи, что существенно снижает необходимые запасы топлива для межпланетных перелетов. Но самое главное состоит в том, что в отличие от всех других двигателей они позволяют обеспечить многократное резервирование. Что имеется в виду?

Для межпланетного комплекса с начальной массой порядка 1000 тонн нужно примерно 400 электроракетных двигателей тягой около 80 гс (0,8 Н) каждый. Все эти двигатели или группы двигателей работают независимо друг от друга, каждая группа имеет свою секцию баков с рабочим телом, свою систему управления, свою секцию солнечных батарей. И отказ даже нескольких групп двигателей не повлияет на межпланетный перелет. Такая двигательная установка практически не подвержена отказам. Это что-то вроде той стаи гусей, которая возила барона Мюнхаузена на Луну: любой гусь по дороге имел право устать и сойти с дистанции без вреда для всего полета.

Суммарная тяга всех двигателей составляет 32 кгс, или 320 Н. В открытом космосе корабль массой около 1000 тонн под действием этой силы приобретает ускорение 32×10-5 м/с2. Этого мизерного ускорения достаточно, чтобы при длительной работе двигателей набрать необходимую для межпланетного перелета скорость. Время движения корабля по спиральной траектории вокруг Земли составляет около трех месяцев. На этом участке траектории двигатели не работают непрерывно, они выключаются при затенении Солнца Землей. После перехода корабля на гелиоцентрическую орбиту работа двигателей продолжится.

В России уже пройден большой путь к организации первого полета человека на Марс. На орбитальных станциях «Салют» и «Мир» проверены многие элементы будущего межпланетного комплекса, проведена огромная работа по отработке систем и технологий обеспечения длительных полетов человека в космос. Ни в одной стране не накоплено такого опыта.

В настоящее время в Институте медико-биологических проблем готовится эксперимент «500 дней» по исследованию медицинских аспектов будущего полета человека на Марс. В качестве основы макета марсианского комплекса используется конструкция, созданная в 1960-х годах по инициативе С. П. Королева, на которой уже проводились исследования по программе отработки межпланетных полетов.

Название эксперимента связано с тем, что, хотя время полета человека на Марс составляет 700-900 суток в зависимости от года проведения экспедиции, первый экспериментальный «полет» на Земле будет длиться 500 дней. Первый экипаж наземного «полета» составит шесть человек, и будет он международным, из представителей разных стран.

Представляется, что американцы окончательно еще не определились с концепцией полета человека на Марс. Но, судя по публикациям, докладам на международных конференциях, они склоняются к использованию ядерных двигателей. Российские специалисты не разделяют этого подхода по многим причинам. Во-первых, испытания таких двигателей на Земле связаны с истечением мощной радиоактивной струи. Несмотря на то что существуют технические способы защиты от нее земной атмосферы, стенды отработки таких двигателей все-таки представляют определенную опасность для окружающей территории. Но самое главное заключается в том, что для ядерных двигателей недостижим такой уровень надежности, какой можно достичь, применяя многократно резервируемые электроракетные двигатели. Кроме того, использование для межпланетного перелета экологически чистых двигателей позволяет сделать межпланетный корабль многоразовым. Многоразовость очень привлекательна, когда речь идет не о единственном полете, а о программе освоения Марса.

Этап посадки на поверхность Марса наиболее критичен с точки зрения обеспечения безопасности экипажа. В отличие от солнечного буксира и межпланетного орбитального корабля взлетно-посадочный комплекс имеет гораздо меньше возможностей использовать резервные комплекты оборудования: процессы идут быстро, и подключить дублирующее оборудование не всегда возможно. Поэтому главным фактором обеспечения необходимой надежности взлетно-посадочного комплекса становится его тщательная отработка, в том числе в беспилотном режиме в реальных марсианских условиях. Никто не решится послать на Марс человека до того, как взлетно-посадочный комплекс не осуществит посадку и взлет с планеты в автоматическом режиме. Поэтому первые полеты человека к Марсу будут без посадки экипажа на его поверхность.

При первых полетах к Марсу экипаж останется на околомарсианской орбите, на поверхность спустится только телеуправляемый автоматический аппарат. Следует особо обратить внимание на этот этап исследования Марса человеком. По существу, на поверхность «спускаются» глаза и руки космонавта. В этом полете хорошо сочетаются и безопасность экипажа, и использование в полной мере опыта и интуиции ученого-планетолога, который будет проводить исследования с борта межпланетного орбитального корабля. Получается полное виртуальное присутствие человека на реальной поверхности Марса. С Земли это сделать невозможно из-за большого расстояния и запаздывания сигнала на несколько десятков минут.

Трудно найти разницу с точки зрения эффективности работы, присутствует ли человек на поверхности физически или виртуально. Разве только не остается на грунте следа подошвы ботинок космонавта. При виртуальной посадке на Марс космонавт ведет наблюдение не через иллюминатор скафандра, а через весьма совершенные видеосредства. Работает не руками в перчатках скафандра, а с помощью более тонких инструментов. Учитывая, что одна из целей экспедиций на Марс — подготовка к его колонизации, полет с виртуальной посадкой экипажа станет только первым этапом в этом процессе.

Таким образом, российский проект полета человека на Марс обладает очень важными особенностями. Во-первых, технические решения, заложенные в проект, и наличие большого задела делают полет на Марс самым дешевым из всех известных вариантов экспедиций; во-вторых, безопасность экипажа в этом полете очень высока.

Зачем лететь на Марс?

И здесь уместен вопрос: а нужен ли вообще полет человека на Марс? С одной стороны, казалось бы, все ясно: полет человека на Марс стоит дорого. Каких-то более или менее заметных благ для землян он не сулит. А на самой Земле есть много проблем, на решение которых требуются средства. Даже просто обеспечение земного населения пищей представляется более приоритетной задачей, чем полет человека на Марс.

Но, к счастью, хотя жизнь населения Земли во все времена не была благополучной, человечество никогда не руководствовалось очевидным на первый взгляд принципом «сиюминутной выгоды». Именно поэтому мы сегодня не сидим в звериных шкурах у костра возле пещеры. Исследование окрестностей собственного «дома», от Мирового океана до космического пространства, всегда было и остается одним из элементов развития цивилизации.

Но существует ли какая-нибудь прагматичная мотивация полета на Марс? Первая очевидная задача экспедиции — изучение нашей соседней планеты. Исследования Марса помогут в значительной степени прогнозировать развитие Земли, продвинуться в понимании проблемы происхождения жизни и многом другом. Они находятся в одном ряду с изучением звезд, галактик, окружающей нас Вселенной, проникновением в существо материи, изучением структуры микромира, строения атомного ядра… Все это непосредственной выгоды в ближайшее время не сулит.

Мы все живем на одной планете, и она подвержена различным глобальным опасностям, которые могут уничтожить все человечество. Например, столкновение с астероидом достаточно большой массы, безусловно, будет означать конец истории Homo sapiens. Да и сами земляне представляют опасность для самих себя. «Яйца не должны лежать в одной корзине», и организация поселений на других планетах Солнечной cистемы, и в первую очередь на Марсе, служит выходом из этой ситуации. Несмотря на то что вероятность глобальной катастрофы невелика, цена, которую может заплатить человечество за беспечность, максимальна из всего, что только можно представить. Процесс освоения планет длительный, но откладывать его начало неразумно, учитывая эту цену. Казалось бы, вполне прагматичная цель. Тем не менее многие считают вероятность глобальной катастрофы слишком низкой, чтобы признать программу освоения планет вполне обоснован ной для развертывания работ по полету человека на Марс. Но следует иметь в виду, что совокупность интересов членов общества никогда не соответствует интересам всего общества в целом.

Важен вопрос о мотивации работ по марсианской программе в России. Есть ли практические задачи, которые решит Россия, взявшись за организацию полета человека на Марс? Оказывается, есть.

Несмотря на то что динамика развития экономики России позитивна, у нее существует весьма уязвимое место — ресурсная направленность (производство и экспорт углеводородов, металлургия и т. д.), на что неоднократно обращал внимание президент Российской Федерации. Восстановить промышленность России после кризиса 1990-х годов пока не удалось. А какую промышленность надо восстанавливать прежде всего? Наверное, ту, которая использует передовые технологии, востребованные на мировом рынке. И авиакосмические технологии относятся именно к таким. По многим из них у нашей страны есть безусловный приоритет.

Восстановление промышленности имеет и социальный аспект. В создании орбитальных станций «Салют», «Мир», российского сегмента Международной космической станции, например, участвовали тысячи предприятий, работающих в самых различных регионах и городах страны. Для создания космической техники нужны не только чисто «космические» производства. Необходимы различные приборы и агрегаты, материалы и многое другое. А это все рабочие места для специалистов, использующих передовые технологии, что всегда очень важно для любой страны.

Мы уже привыкли к понятию «утечка мозгов». Утечка мозгов идет, но вроде бы ничего страшного не происходит. В действительности это только так кажется. Процесс, когда наиболее ценные кадры покидают Россию, опасен для страны, грозит самому ее существованию. Ученые покидают страну не потому, что за рубежом они получают больше денег, а прежде всего потому, что в нашей стране нет программ, в которых они нашли бы себе применение. России как воздух нужны крупные научные программы. В частности, в программе полета человека на Марс будут востребованы ученые самых различных специальностей — биологи, медики, материаловеды, физики, программисты, химики и многие, многие другие.

Можно по-разному относиться к понятию престижа страны. Но авторитет государства — это понятие в том числе и экономическое. Вспомним, как вырос авторитет США после программы «Аполлон». Полет человека на Марс, что бы ни говорили по этому поводу скептики, всегда волновал и будет волновать человечество. Реализация этой мечты многих поколений предельно престижна. Так что проект полета человека на Марс для России имеет особое значение.

Теперь о ситуации с международным сотрудничеством при организации полета человека на Марс. Очень часто можно слышать, что этот полет возможен только в широкой международной кооперации. Действительно, освоение Марса — длительный процесс, и в нем на определенных этапах станут участвовать практически все страны, обладающие соответствующими технология ми. В программе полетов на Марс будут востребованы самые различные корабли, базы, средства исследований и строительства. Национальные программы различных стран будут решать отдельные задачи освоения Марса. И каждая страна пройдет свою часть пути к этой программе.

Пока существуют разные государства, неизбежно наличие национальных программ. Каждая страна заинтересована в развитии своих передовых технологий, основанных на собственном опыте и разработках. Особенно если эти технологии востребованы на мировом рынке. Поэтому в космонавтике всегда будут соседствовать и международные и национальные программы.

Сегодня в США полет человека на Марс объявлен национальной программой. Американцы, в принципе, могут пригласить участвовать в ней и другие страны, однако за их собственные средства. Но собственные средства следует тратить с максимальной выгодой для себя. Вряд ли целесообразно делать за свои деньги какие-то элементы американской программы. Более выгодно разрабатывать ключевые технологии при полете человека на Марс, которые позволят развивать национальные программы и в дальнейшем. Например, многоразовые солнечные буксиры, ставшие одним из элементов российской концепции полета на Марс, позволят решать многие другие задачи, стоящие перед человечеством. Дело в том, что эффективные космические буксиры в перспективе во многом определят космическую стратегию, как когда-то ракеты-носители. Иными словами, Россия должна иметь собственную программу развития, а не обслуживать чужие интересы. Это ни в коей мере не мешает сотрудничеству. Системы, созданные в России, будут важны для обеспечения более широких возможностей, в том числе и американских полетов. И кооперация с различными странами по созданию отдельных элементов экспедиций, безусловно, будет.

Сотрудничество с США в первом полете человека на Марс имеет и чисто технические аспекты. Мы уважаем квалификацию американских инженеров. Но принятая американцами концепция может нас не устроить. Известен ряд американских программ, которые технически неприемлемы для российских специалистов, в том числе с точки зрения обеспечения безопасности экипажа.

Предположим, что американцы захотят осуществить какой-нибудь грандиозный марсианский ядерный проект наподобие «Фридом»* и, хотя это маловероятно, предложат России участвовать в этом проекте на паритетной основе. Ну и что нам делать? Участвовать? Или практически за те же деньги разрабатывать проект, основанный на российских технологиях, более дешевый, менее амбициозный и, как мы рассчитываем, более результативный. Представляется, что второй путь естественен: интеллектуальный потенциал и опыт разработок пилотируемых программ, особенно связанных с длительными полетами человека, у российских специалистов, во всяком случае, не меньший, чем у американцев.

Работа над марсианской экспедицией в США и в России не будет какой-то «марсианской гонкой». Каждая из стран станет разрабатывать свои ключевые технологии, которые позволят развивать свою национальную передовую промышленность и науку. Например, для организации очень результативного пилотируемого полета на орбиту Марса с виртуальной посадкой экипажа на марсианскую поверхность Россия уже имеет огромный технический и технологический задел. И очень важно использовать его в крупной научно-технической программе.

Таким образом, в России есть все для осуществления полета человека к Марсу: необходимый интеллектуальный потенциал, уникальный опыт работ по пилотируемым программам, работоспособная промышленная кооперация, необходимость инвестиций в наукоемкую промышленность с передовыми технологиями. Есть все основания рассчитывать, что в ближайшие десятилетия давняя мечта землян о полете человека на Марс наконец осуществится!

Комментарии к статье

* «Фридом» — неосуществленный, весьма амбициозный американский проект огромной орбитальной станции. Многие инженерные разработки этого проекта были использованы при создании МКС.

См. в номере на ту же тему

Марсианская экспедиция на земле. Об эксперименте «Марс-500».

www.nkj.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *